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Introduction

� Solve a class of nonlinear constrained optimization 
problems that can be formulated as 

where             ,                   ,                    ,                    , and
. In vector notation, the problem above can be 

represented in the following standard form: 

where                       and                    . 
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Introduction

� Definition 20.1. Any point satisfying the constraints is 
called a feasible point. The set of feasible points, 

is called a feasible set. 

� Actually, linear programming problems have been studied. 

� For if we are confronted with a maximization problem, it 
can easily be transformed into the minimization problem 
by observing that 
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Example

� Consider the following optimization problem: 

� This problem turns out to be simple enough to be solved 
graphically. (Figure 20.1)

� Feasible set: heavy solid line

� The inverted parabolas represent 
level sets of the objective function

� The minimizer lies on the level set 
with                . The minimizer of 
the objective function is 
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Problem Formulation

� The class of optimization problems we analyze in this 
chapter is 

where             ,                   ,                     ,
and             . We assume that the function      is 
continuously differentiable, that is,            . 

� Definition 20.2. A point       satisfying the constraints
is said to be a regular point of the 

constraints if the gradient vectors                                  are 
linearly independent. 
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Problem Formulation

� Let              be the Jacobian matrix of                         at
given by  

Then,       is regular if and only if                               (i.e., 
the Jacobian matrix is of full rank). 

� The set of equality constraint                                     , 
, describes a surface 

� Assuming that the points in     are regular, the dimension 
of the surface     is 
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Example

� Let n=3 and m = 1 (i.e., we are operating in      ). 
Assuming that all points in S are regular, the set S is a 
two-dimensional surface. For example, let 

Note that                                  , and hence for any
. In this case, 

� Figure 20.2

7



Example

� Let n=3 and m=2. Assuming regularity, the feasible set S
is a one-dimensional object (i.e., a curve in      ). For 
example, let 

In this case,                              and 
Hence, the vectors               and              are linearly 
independent in      . Thus, 

� Figure 20.3
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Tangent and Normal Spaces

� Definition 20.3. A curve C on a surface S is a set of points
, continuously parameterized by

that is,                       is a continuous function. 

� The definition of a curve implies that all the points on the 
curve satisfy the equation describing the surface. The 
curve C passes through a point       if there exists 
such that 

� Figure 20. 4
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Tangent and Normal Spaces

� Intuitively, we can think of a curve 
as the path traversed by a point      traveling on the surface 
S. The position of the point as time t is given by 

� Definition 19.4. The curve                                  is 
differentiable if 

exists for all 
The curve                                  is twice differentiable if 

exists for all 
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Tangent and Normal Spaces

� Note that both         and          are n-dimensional vectors. 
We can think of          and          the velocity and 
acceleration, respectively, of a point traversing the curve C
with position          at time t. Therefore, the vector 
is tangent to the curve C at 

� We are now ready to introduce the notions of a tangent 
space. For this recall the set                                      , 
where            . We think of S as a surface in 

� Figure 20.5
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Tangent and Normal Spaces

� Definition 20.5. The tangent space at a point       on the 
surface                                        is the set 

� Note that the tangent space           is the nullspace of the 
matrix             :                                . The tangent space is 
therefore a subspace of 

12



Tangent and Normal Spaces

� Assuming that      is regular, the dimension of the tangent 
space is           , where       is the number of equality 
constraints                  . Note that the tangent space passes 
through the origin. However, it is often convenient to 
picture the tangent space as a plane that passes through the 
point      . For this, we define the tangent plane at      to be 
the set 

� Figure 20.6
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Tangent and Normal Spaces

� Figure 20.7 illustrates the relationship between the tangent 
plane             and 
the tangent space          . 
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Example

� Let
Then,      is the     -axis in       (Figure 20.8). We have 

Because          and         are linearly independent when 
evaluated at any           , all the points of     are regular. The 
tangent space at any arbitrary point of      is
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Example

� In the example, the tangent space          at any point  
is a one-dimensional subspace of       .  

� Intuitively, we would expect the definition of the tangent 
space at a point on a surface to be the collection of all 
“tangent vectors” to the surface at that point. 

� We have seen that the derivative of a curve on a surface at 
a point is a tangent vector to the curve, and hence to the 
surface. 

� The intuition above agrees with our definition whenever
is regular.  
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Tangent and Normal Spaces

� Theorem 20.1. Suppose that              is a regular point and 
is the tangent space at      . Then,                  if and 

only if there exists a differentiable curve in      passing 
through       with derivative      at      . 

� Proof:        : Suppose that there exists a curve 
in      such that                   and                 for some
Then,                    for all               . If we differentiate the 
function               with respect to     using the chain rule, 
we obtain 

for all               . Therefore, at      we get                         
and hence  
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Tangent and Normal Spaces

� Definition 20.6. The normal space            at a point       on 
the surface                                        is the set 

� We can express the normal space 

that is, the range of the matrix              . Note that the 
normal space            is the subspace of       spanned by the 
vectors                                  ; that is, 
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Tangent and Normal Spaces

� Note that the normal space contains the zero vector. 
Assuming that       is regular, the dimension of the normal 
space            is      . As in the case of the tangent space, it 
is often convenient to picture the normal space            as 
passing through the point       (rather than through the 
origin of       ). For this, we define the normal plane at      
as the set 

� Figure 20.9 

19



Tangent and Normal Spaces

� Lemma 20.1. We have                            and 

� Proof: By definition of           , we may write 

Hence, by definition of           , we have
By Exercise 3.11 we also have  
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Tangent and Normal Spaces

� By Lemma 20.1, we can write       as the direct sum 
decomposition (see Section 3.3): 

that is, given any vector             , there are unique vectors
and                  such that 
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Lagrange Condition

� Consider functions of two variables and only one equality 
constraint. Let                 be the constraint function. Recall 
that at each point     of the domain, the gradient vector 
is orthogonal to the level set that passes through that point. 
Indeed, let us choose a point                    such that 
and assume that                . The level set through the point 

is the set                     . We then parameterize this level 
set in a neighborhood of      by a curve         , that is, a 
continuously differentiable vector function                 such 
that 
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Lagrange Condition

� We can now show that            is orthogonal to         . 
Indeed, because     is constant on the curve 
we have that for all             , 

� Hence, for all              , 

� Applying the chain rule, we get 

Therefore,             is orthogonal to 
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Lagrange Condition

� Now suppose that       is a minimizer of                  on the 
set                    . We claim that             is orthogonal to 
To see this, it is enough to observe that the composite 
function of    given by                     achieves a minimum at 
Consequently, the first-order necessary condition for the 
unconstrained extremumproblem implies that 
Applying the chain rule yields

Thus,             is orthogonal to         . The fact that         is 
tangent to the curve          at      means that             is 
orthogonal to the curve at 
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Lagrange Condition

� Recall that            is also orthogonal to        . Therefore, 
the vectors            and             are parallel; that is,             
is a scalar multiple of           . The observations allow us 
now to formulate Lagrange’s theoremfor functions of 
two variables with one constraint. 
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Lagrange Theorem

� Theorem 20.2 Lagrange’s Theoremfor      . Let 
the point      be a minimizer of                  subject to the 
constraint                             . Then,            and             are 
parallel. That is, if                  , then there exists a scalar 
such that 

� The scalar      is called the Lagrange multiplier. Note that 
the theorem also holds for maximizers. 
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Lagrange Theorem

� Lagrange’s theorem provides a first-order necessary 
condition for a point to be a local minimizer. This 
condition, which we call the Lagrange condition, consists 
of two equations: 

� Note that the Lagrange condition is necessary but not 
sufficient. Figure 20.12 illustrates a variety of points 
where the Lagrange condition is satisfied, including a case 
where the point is not an extremizer. 
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Lagrange Theorem
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Lagrange Theorem

� Theorem 20.3 Lagrange’s Theorem. Let      be a local 
minimizer (or maximizer) of                  , subject to 

. Assume that      is a regular point. Then, 
there exists             such that 

� Proof. We need to prove that 

for some            ; that is,                                           . But 
by Lemma 20.1,                       . Therefore, it remains to 
show that 
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Lagrange Theorem

� Proof. Suppose that              . Then, by Theorem 20.1, 
there exists a differentiable curve                        such that 
for all             ,                 , and there exists               
satisfying 

� Now consider the composite function                    . Note 
that     is a local minimizer of this function. By the first-
order necessary condition for unconstrained local 
minimizers (see Theorem 6.1) 
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Lagrange Theorem

� Proof. Applying the chain rule yields

So all                 satisfy 
that is, 
This completes the proof. 
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Lagrange’s Theorem

� Lagrange’s theorem states that if       is an extremizer, then 
the gradient of the objective function     can be expressed 
as a linear combination of the gradients of the constraints. 
We refer to the vector       as the Lagrange multiplier 
vector, and its component as Lagrange multipliers. 

� A compact way to write the necessary condition is 
. If this condition fails, then       cannot be 

an extremizer. 

� Figure 20.13
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Lagrange’s Theorem

� Consider the following problem: 

where                and 

The feasible set is evidently [0, 1]. Clearly,              is a 
local minimizer. However,                   and                 . 
Therefore,        does not satisfy the necessary condition in 
Lagrange’s theorem. Note, however, that       is not a 
regular point, which is why Lagrange’s theorem does not 
apply here.  
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Lagrange’s Theorem

� It is convenient to introduce the Lagrangian function 
given by 

The Lagrange condition for a local minimizer can be 
represented using the Lagrangian function as 

for some     , where the derivative operation D is with 
respect to the entire argument               . In other words, 
the necessary condition in Lagrange’s theorem is 
equivalent to the first-order necessary condition for 
unconstrained optimization applied to the Lagrangian
function. 
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Lagrange’s Theorem

� Denote the derivative of      with respect to      as         and 
the derivative of     with respect to      as        . Then, 

Note that                                                and 
Therefore, Lagrange’s theorem for a local minimizer
can be stated as 

for some      , which is equivalent to
In other words, the Lagrange condition can be expressed 
as  
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Lagrange’s Theorem

� The Lagrange condition is used to find possible 
extremizers. This entails solving the equations 

The above represents             equations in            
unknowns. Keep in mind that the Lagrange condition is 
necessary but not sufficient; that is, a point       satisfying 
the equations above need not be an extremizer. 
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Example

� Given a fixed area of cardboard, we wish to construct a 
closed cardboard box with maximum volume. We can 
formulate and solve this problem using the Lagrange 
condition. 

� Denote the dimension of the box with maximum volume 
by                 and let the given fixed area of cardboard be

. The problem can then be formulated as  
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Example

� We denote                           and
We have                                              and

. Note that all feasible 
points are regular in this case.  By the Lagrange condition, 
the dimension of the box with maximum volume satisfies 

where 
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Example

� We now solve these equations. First, we show that
and      are all nonzero. Suppose that            . By the 
constraints, we have                   . However, the second and 
third equations in the Lagrange condition yield
which together with the first equation implies that
This contradicts the constraints. A similar argument 
applies to   

� Next, suppose that           . Then, the sum of the three 
Lagrange equations gives                                   , which 
contradicts the constraints. 
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Example

� We now solve for                in the Lagrange equations. 
First, multiply the first equation by       and the second by 
and subtract one from the other. We arrive at 
Because neither       nor     can be zero (by part b), we 
conclude that              . We similarly deduce that 
From the constraint equation, we obtain
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Example

� Notice that we have ignored the constraints that                
are positive so that we can solve the problem using 
Lagrange’s theorem. However, there is only one solution 
to the Lagrange equations, and the solution is positive. 
Therefore, if a solution exists for the problem with 
positivity constraints on the variables               , then this 
solution must necessarily be equal to the solution above 
obtained by ignoring the positivity constraints. 
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Example

� Consider the problem of extremizing the objective 
function                         on the ellipse 

We have 

� Thus, 

and
Setting                         and                      , we obtain three 
equations in three unknowns 
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Example

� All feasible points in this problem are regular. From the 
first of the equations above, we get either            or
For the case where           , the second and third equations 
imply that                and                      . For the case where 

, the second and third equations imply that
and            . Thus, the points that satisfy the Lagrange 
condition for extrema are 
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Example

� Because

we conclude that if there are minimizers, then they are 
located at         and        , and if there are maximizers, then 
they are located at         and        . It turns out that, indeed 

and        are minimizers and         and are 
maximizers. 

� This problem can be 
solved graphically (Figure 20.14)
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Example

� Consider the following problem: 

where                      and                     . Note that if a point 
is a solution to the problem, then so is any 

nonzero scalar multiple of it, 

Indeed, 

Therefore, to avoid the multiplicity of solutions, we 
further impose the constraint 
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Example

� The optimization problem becomes

� Let us write                        ,

� Any feasible point for this problem is regular. We now 
apply Lagrange’s method. We first form the Lagrangian
function 

Applying the Lagrange condition yields 
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Example

� The first of the equations above can be represented as
or  

This representation is possible because                and
By assumption            , hence          exists. Premultiplying

by         , we obtain 

or, equivalently, 

Therefore, the solution, if exists, is an eigenvector of 
and the Lagrange multiplier is the corresponding 
eigenvalue. 
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Example

� As usual, let       and       be the optimal solution. Because 
and                          , we have 

Hence,       is the maximum of the objective function, and 
therefore is, in fact, the maximal eigenvalue of 

48



Second-Order Conditions

� We assume that                      and                       are twice 
continuously differentiable:               . Let 

be the Lagrangian function. Let              be the Hessian 
matrix of             with respect to    : 

where            is the Hessian matrix of     at      and
is the Hessian matrix of       at     ,                   , given by 
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Second-Order Conditions

� We introduce the notation               : 

� Using the notation above, we can write 

� Theorem 20.4. Second-Order Necessary Conditions. Let 
be a local minimizer of                  subject to 

, and             . Suppose that      is 
regular. Then, there exists              such that: 
� 1. 

� 2. For all                 . We have 
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Second-Order Conditions

� Observe that            plays a similar role as the Hessian 
matrix         of the objective function    did in the 
unconstrained minimization case. However, we now 
require that                     only on          rather than on 

� These conditions above are necessary, but not sufficient, 
for a point to be a local minimizer. We now present, 
without a proof, sufficient conditions for a point to be a 
strict local minimizer. 
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Second-Order Conditions

� Theorem 20.5. Second-Order Sufficient Conditions. 
Suppose that               and there exists a point              and 

such that: 
� 1. 

� 2. For all                 . We have 

Then      is a strict local minimizer of    subject to 

� Theorem 20.5 states that if an      satisfies the Lagrange 
condition, and               is positive definite on         , then
is a strict local minimizer. A similar result to Theorem 
20.5 holds for a strict local maximizer, the only difference 
being that               be negative definite on 

52



Second-Order Conditions

� Consider the following problem: 

� As pointed out earlier, we can represent this problem in 
the equivalent form 

� The Lagrangian function for the transformed problem is 
given by 
The Lagrange condition yields 
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Second-Order Conditions

� There are only two values of    that satisfy 
namely, the eigenvalues of                              . We recall 
from our previous discussion of this problem that the 
Lagrange multiplier corresponding to the solution is the 
maximum eigenvalue of          , namely,                 . The 
corresponding eigenvector is the maximizer – the solution 
to the problem. 

� The eigenvector corresponding to the eigenvalue           
satisfying the constraint                is       , where 
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Second-Order Conditions

� At this point, all we have established is that the pairs 
satisfy the Lagrange condition. We now show that the 
points        are, in fact, strict local maximizers. We do this 
for the point     . A similar procedure applies to       . 

� We first compute the Hessian matrix of the Lagrangian
function. We have 

The tangent space          to                             is 
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Second-Order Conditions

� Note that for each                         , 

Hence,                    on         , and thus                      is a 
strict local maximizer. The same is for the point 

� Note that 

which, as expected, is the value of the maximal eigenvalue 
of          . Finally, we point out that any scalar multiple 
of     ,         , is a solution to the original problem of 
maximizing 
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Minimizing Quadratics Subject to Linear Constraints

� Consider the problem 

where                                                      . This problem is a 
special case of what is called a quadratic programming 
problem (the general form of a quadratic programming 
problem includes the constraint         ). 

� Note that the constraint set contains an infinite number of 
points. 
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Minimizing Quadratics Subject to Linear Constraints

� To solve the problem, we first form the Lagrangian
function

The Lagrange condition yields 

Rewriting, we get 

Premultiplying both sides of the above by     gives

Using the fact that              , and noting that               is 
invertible because           and                    , we can solve for 
to obtain                            . Therefore, we obtain
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Minimizing Quadratics Subject to Linear Constraints

� The point      is the only candidate for a minimizer. To 
establish that     is indeed a minimizer, we verify that it 
satisfies the second-order sufficient conditions. 

� For this, we first find the Hessian matrix of the 
Lagrangian function at           . We have 

which is positive definite. Thus, the point      is a strict 
local minimizer. 
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Minimizing Quadratics Subject to Linear Constraints

� The special case where             reduces to the problem 
considered in Section 12.3. Specifically, the problem in 
Section 12.3 is to minimize the norm       subject to 
The objective function here is                  , which is not 
differentiable at          . This precludes the use of 
Lagrange’s theorem because the theorem requires 
differentiability of the objective function. 

� We can overcome this difficulty by considering an 
equivalent optimization problem 
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Minimizing Quadratics Subject to Linear Constraints

� The objective function            has the same minimizer as 
the previous objective function      . Indeed, if      is such 
that for all             satisfying            ,                 , then 

subject to             is simply the problem 
considered above with            , we easily deduce the 
solution to be                           , which agrees with the 
solution in Section 12.3. 

61



Example

� Consider the discrete-time linear system model 

with initial condition      given. We can think of         as a 
discrete-time signal that is controlled by an external input 
signal       . In the control literature,     is called the state at 
time    . For a given     , our goal is to choose the control 
signal         so that the state remains “small” over a time 
interval        , but at the same time the control signal is 
“not too large.” 
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Example

� To express the desire to keep the state         small, we 
choose the control sequence to minimize 

On the other hand, maintaining a control signal that is not 
too large, we minimize 

� The two objectives above are conflicting in the sense that 
they cannot, in general, be achieved simultaneously –
minimizing the first may result in a large control effort, 
while minimizing the second may result in large states. 
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Example

� One way to approach the problem is to minimize a 
weighted sum of the two functions above. Specifically, we 
can formulate the problem as 

where the parameters    and     reflect the relative 
importance of keeping the state small versus keeping the 
control effort not too large. This problem is an instance of 
the linear quadratic regulator (LQR) problem. Combining 
the two conflicting objectives of keeping the state small 
while keeping the control effort small is an instance of the 
weighted sum approach. 
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Example

� To solve the problem, we can rewrite it as a quadratic 
programming problem. Define
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Example

� With these definitions, the problem reduces to the 
previously considered quadratic programming problem 

where     is              ,      is             , and            . The 
solution is

� The first     components of      represent the optimal state 
signal in the interval        , whereas the second     
components represent the optimal control signal. 
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Example

� In practice, computation of the matrix inverses in the 
formula for      above may be too costly. There are other 
ways to tackle the problem by exploiting its special 
structure. This is the study of optimal control. 
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Example

� Credit-Card Holder Dilemma. Suppose that we currently 
have a credit-card debt of $10,000. Credit-card debts are 
subject to a monthly interest rate of 2%, and the account 
balance is increased by the interest amount every month. 
Each month we have the option of reducing the account 
balance by contributing a payment to the account. Over 
the next 10 months, we plan to contribute a payment every 
month in such a way as to minimize the overall debt level 
while minimizing the hardship of making monthly 
payments. 
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Example

� We solve our problem using the LQR framework. Let the 
current time be 0,     the account balance at the end of 
month    , and      our payment in month   . We have 

that is, the account balance in a given month is equal to 
the account balance in the previous month plus the 
monthly interest on that balance minus our payment that 
month. Our optimization problem is then 

which is an instance of the LQR problem. The parameters 
and    reflect our priority in trading off between debt 
reduction and hardship in making payments. 
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Example

� The more anxious we are to reduce our debt, the larger the 
value of     relative to    . On the other hand, the more 
reluctant we are to make payments, the larger the value of 

relative to   . 

� The solution to the problem is given by the formula 
derived in previous example. This figure plots the 
monthly account balances and payments over the next 10 
months using          and          . 
We can see here that our debt has 
been reduced to less than $1000 
after 10 months, but with a first 
payment close to $3000. 
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Example

� If we feel that a payment of $3000 is too high, then we can 
try to reduce this amount by increasing the value of    
relative to   . However, going too far along these lines can 
lead to trouble. Indeed, if we use                    , although 
the monthly payments do not exceed $400, the account 
balance is never reduced by much below $10,000. In this 
case, the interest on the account 
balance eats up a significant 
portion of our monthly payments. 
In fact, our debt after 10 months 
will be higher than $10,000. 
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