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Introduction

» Solve a class of nonlinear constrained optimization
problems that can be formulated as
minimize f(a)
subject to hi(x) =0, =1,...,m
gilx) <0,7=1,...,p
wherexz e R" f:R*"— R h,: R" — R ,g;i R — R . and
m < n _|n vector notation, the problem above can be

represented in the followingjandard form:
minimize f(x)
subject to h(x) = O
g(z) <0

whereh: R = ™ ang: R" — RP.



Introduction

» Definition 20.1. Any point satisfying the constrems
called afeasible point. The set of feasible points,
{x € R": h(x)=0,g(x) <0}
IS called d&easible set.

» Actually, linear programming problems have beenlistil
T

minimize ¢ &
subject to Ax = b
x>0
» For if we are confronted with a maximization prahlat
can easily be transformed into the minimizationopem

by observing that |

maximize f(x) = minimize — f(x)



Example

» Consider the following optimization problem:
minimize (xq — 1)* + x5 + 2

subject to xo — 21 =1
T]+ 19 < 2

» This problem turns out to be simple enough to Iheesb
graphically. (Figure 20.1)
» Feasible set: heavy solid line

» The inverted parabolas represent
level sets of the objective function

» The minimizer lies on the level set
with f = —-1/4 . The minimizer of
the objective function is* = [1/2,3/2]"

4



Problem Formulation

» The class of optimization problems we analyze is th
chapter is minimize f(z)
subject to h(x) = 0
wherex c R* f:R"—> R h, R"— R"™ ,h=|hi,....hn|"
and m <n .We assume that the funcitois
continuously differentiable, that i% € C!

» Definition 20.2. A pointz* satisfying the coranhts
hi(z*) =0,..., hy,(2*) = 0 IS said to be aegular point of the
constraints if the gradient vectotsu (z*), ..., Vh,(z*) are
linearly independent.



Problem Formulation

» Let Dh(z*) be the Jacobian matrixwof [n,, ..., n,)" at
given by D)) [vh(@)"
Dh(x*) = = -

| Dh e 0] [Vhm (@) ]
‘'hen, z* is regular if and only fank(Dh(x*)) =m (i.e.,
the Jacobian matrix is of full rank).

» The set of equality constraint,(z) =0, ..., hy,(x) =0
h, - R — R , describes a surface
S={xeR": hi(x)=0,.. hp(x) =0}

» Assuming that the points ist  are reqgular, theatision
of the surface i3 —m



Example

» Letn=3 andm=1 (i.e., we are operating ¥ ).
Assuming that all points iBare regular, the s&is a
two-dimensional surface. For example, let

hi(z) = 29 — 23 = 0
Note thatvhi(z) = [0,1, —2z5]" | anthéefor anyz ¢ R’
vhi(z) # 0. In this case,
dim S =dim{x : hy(x) =0} =n—m =2

» Figure 20.2

ThE




Example

» Let n=3 andm=2. Assuming regularity, the feasible Set
IS a one-dimensional object (i.e., a curverih). For
example, let h () =

hg(.’B) — r9 — SB%

In this case,vhi(z) =[1,0,0"  ands(x) =0, 1, —2z3]"
Hence, the vectorsyhi(x) andh:(z) re liaearly
iIndependent ink? . Thus,

dim S =dim{x : hi(x) =0, hs(x) =0} =n—m =1

» F I g ure 20.3 S={{xqXpX]" : X2-X5=0, X,=0}




Tangent and Normal Spaces

» Definition 20.3. A curveC on a surfac&is a set of points
{x(t) e S:te(ab)}, continuously parameterized bye (a, b
thatis,z : (a,b) — S IS a continuous flm.

» The definition of a curve implies that all the pisiion the
curve satisfy the equation describing the surfabe.

curveC passes through a point*  if there exists (a,b)
such thate(t*) = x*

» Figure 20. 4

Surface S



Tangent and Normal Spaces

» Intuitively, we can think of a curv€ = {z(t) : t € (a,b)}
as the path traversed by a poit  travelinghersurface
S The position of the point as times given by x(t)

» Definition 19.4. The curve = {x(t) : t € (a,b)} IS

differentiable If |
dx EX0

(1) = (1) =

exists for all ¢ € (a,b
The curveC = {z(t) : t € (a,b)} IS twaiferentiable if

P (i1(t)] exists for allt € (a,b)
i(t) = —=(t) = | -

alt)



Tangent and Normal Spaces

4

Note that bothz(t) ana(¢) areimensional vectors.

We can think ofz(t) ana () the velo@ahd
acceleration, respectively, of a point traversimg curveC
with position z(¢) at time Therefore, the vectog(¢*)

IS tangent to the curveC at «*

We are now ready to introduce the notions of ag¢ang
space. For this recall the set= {x € R" : h(z) =0} ,
where h ¢ ¢! . We think @&as a surface i®k"

Figure 20.5 x(b)

/(l)
x(t)

curve C
x(a)



Tangent and Normal Spaces

» Definition 20.5. Thdangent space at a pointz* on the
surfaceS = {x € R*: h(x) =0}  he Bet
T(z*) ={y : Dh(z")y = 0}
» Note that the tangent spacer*) IS the nadisjof the
matrix Dh(z*) T(x*) = N(Dh(x*)) . The tangent space Is
therefore a subspace af



Tangent and Normal Spaces

» Assuming thate* Is regular, the dimension oftdregent
space iss —m , where IS the numbegobkéty
constraints»;(z*) =0 . Note that the tangpace passes
through the origin. However, it is often convenient
picture the tangent space as a plane that pagsseghthe
point z* . For this, we define thangent plane at * to be

the set
TPx*)=T(x")+x*={x+x":x €T (x")}

Tangent Plane

» Figure 20.6




Tangent and Normal Spaces

» Figure 20.7 illustrates the relationship betweaentimgent
planeTp(xz*) and
the tangent space(z*)




Example

4 Let S = {lB ~ R3 : h1($> — I :O,hQ(IIZ> ::1:1—:1;2:()}
Then, s isthe; -axisir® (Figure 20\8% have
_[wh(@)] [t 0 0
Dh(z) = [vhg(az)] - [1 ~1 o]
Becausey/h; amgh,  are linearly indepethaden
evaluated at any. ¢ 5 , all the pointssadire regular. The

tangent space at any arbitrary pointof  Is,

T(@) ={y : V(@) y =0, Vhy(z)"y = 0} N s
Y1

fw:|; o || o)
Y3

{[0,0, CV]T - a € R} Vhy(x) <
the zs-axis in R®

h1=0
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Example

» In the example, the tangent space:) atamt € S
IS a one-dimensional subspace ¥

» Intuitively, we would expect the definition of tih@ngent
space at a point on a surface to be the colleciia
“tangent vectors” to the surface at that point.

» We have seen that the derivative of a curve onfac at
a point is a tangent vector to the curve, and hemtee
surface.

» The intuition above agrees with our definition wheer =*
IS regular.
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Tangent and Normal Spaces

» Theorem 20.1. Suppose that € S IS a regulent and
T(z*) Is the tangent space at . Them T(=* If and
only if there exists a differentiable curve $n passing
through z* with derivativy at

» Proof. < : Suppose that there exists a cym(@) : ¢t € (a,0)}
In S such thate(t*) =2*  add*) =y for somet* € (a,b)
Then, h(z(t)) =0 foralle (a,0) Wk differentiate the
function h(x(t)) with respectto using tthain rule,
we obtain ¢ |

—h(z(t)) = D(h(z(t)))z(t) = 0
forall ¢t € (a,b) . Therefore, at  we gBth(z*))y =0
and hencey ¢ T(z*
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Tangent and Normal Spaces

» Definition 20.6. The normal space(x*) abapzx* on
the surfaceS = {x ¢ R": h(z) = 0} is the set
N(z*)={x € R": z = Dh(z*)'z,z ¢ R"}

» We can express the normal space
N(z*) = R(Dh(z*)T)
that is, the range of the matrixw(z*)? . &thtat the
normal spacev(z*) Is the subspace&of anmsgd by the
vectors vhi(z*), ..., vha(z*)  ; thatis,

N(x*) = span[syhi(x*), ..., Vhp(x”)]
={xc R z=zy @)+ -+ 2,V hp(x), 21, ..., 2 € R}




Tangent and Normal Spaces

» Note that the normal space contains the zero vector
Assuming thatz* Is reqgular, the dimension efrlormal
spaceN(z*) Is .AsIn the case of thgeat space, it
IS often convenient to picture the normal space*) as
passing through the point*  (rather than thiotng
origin of " ). For this, we define the normé&me atz*

as the set
NP(z*)=N(z*)+z*={xz+x* € R":x € N(z*)}

» Figure 20.9




Tangent and Normal Spaces

» Lemma 20.1. We hav@'(z*) = N(z*)* ang* ) = N(x*)
» Proof: By definition of 7'(z*) , we may write
T(x*)={y e R":xly =0 forall x € N(z*)}

Hence, by definition ofV(z*) |, we hav&z*) = N(z*)!
By Exercise 3.11 we also hav&z*)" = N(z*)

20



Tangent and Normal Spaces

» By Lemma 20.1, we can write”  as the direct sum
decomposition (see Section 3.3):
R" = N(z*) ® T(z")
that is, given any vectos ¢ R* , there argue vectors
we N(z* andy € T(z* such that
V=w+Y

21



Lagrange Condition

» Consider functions of two variables and only oneadity
constraint. Let,: r2 -~ R be the constraumtdtion. Recall
that at each point  of the domain, the gradrestory(z)
IS orthogonal to the level set that passes throbighpoint.
Indeed, let us choose a point= [+ 257 chdbati(z*) =0
and assume thatn(z) £0 . The level seutindhe point
z* 1S the set{z: n(x) =0} . We then paramzgethis level
set in a neighborhood af by a cufve)} thatis, a
continuously differentiable vector functienr — r*> such
that

x(t) = [x1<2] te(a,b) x*=x(t*) =zt)#0 t*e(a,b)

22



Lagrange Condition

» We can now show thagn(z*)  Is orthogonakto) .
Indeed, because Is constant on the cuwe ¢ € (a,b)}
we have that for all € (a,0) A(x(t)) =0

» Hence, for all ¢ € (a,0) %h(:::(t)):o

» Applying the chain rule, we get

d T, —
() = vh(z(t) () =0

Therefore,yn(z*) Is orthogonal &)
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Lagrange Condition

» Now suppose that+ Is a minimizer pfr> - R on the
set{z: h(z)=0 .We claim thatz*) I1s orthogonal tai(+)
To see this, it iIs enough to observe that the corgos
function oft given bw(t) = f(=(t))  achisveeminimum at-
Consequently, the first-order necessary conditooritfe
unconstrained extremuproblem implies thaﬂ t*) =0

Applying the chain rule yields

0= TR = Tl () = 7 )l

Thus,vf(z*) Isorthogonal tgr*) . Thetfatz(t*) Is
tangent to the curve:(t)} at  means that*) |
orthogonal to the curve at

24



Lagrange Condition

» Recall thatyn(z*) Is also orthogonali@). Therefore,

the vectors/h(z*) angf(z*) are pardilrelt 1S, f(z*)
IS a scalar multiple of/x(z*) . The observasialiow us

now to formulatd.agrange’s theorenfor functions of
two variables with one constraint.

x()

25




Lagrange Theorem

» Theorem 20.2.agrange’s Theoremfor, =2 m =1. Let
the pointz* be a minimizer gf: 2 -+ R ubgect to the
constrainti(z) =0,h: R? - R . Thetf(z*) andvh(z*) are
parallel. That is, ifynz*) £0 , then therasts a scalar

such that
Vf(x)+ A h(z*) =0

» The scalan- Is called tlhe@agrange multiplier Note that
the theorem also holds for maximiz:

26




Lagrange Theorem

» Lagrange’s theorem provides a first-order necessary
condition for a point to be a local minimizer. This
condition, which we call theagrange condition consists

of two equations:
V(@) + A" v h(xt) =0
h(x*) =0

» Note that the Lagrange condition is necessary out n
sufficient. Figure 20.12 illustrates a variety oifts
where the Lagrange condition is satisfied, inclgdancase

where the point is not an extremizer.

27



Lagrange Theorem

V f(x*)
Vh(x*)

(a) (b)

Vh(x™)
/’J_\ h=0

() (d)

Figure 19.12 Four cxamples where the Lagrange condition is satisfied: (a) maximizer, (b)
minimizer, (¢) minimizer, (d) not an extremizer (adapted from [87])
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Lagrange Theorem

» Theorem 20.3 Lagrange’s Theorem. ket  be d loca
minimizer (or maximizer) off: " = R, sabfton(x) =0
h: R"— R™ m<n.Assume that- Is a regular point. Then,

there exista\* ¢ R such that
Df(x*) + X" Dh(x*) = 0T

» Proof. We need to prove that
v f(x*) = —=Dh(z*)"\"
for somex € r7 ; that i1s;f(z*) € R(Dh(z*)T) = N(z*) . But
by Lemma 20.1N(z*) = T(z*)* . Thereforeéemains to
show thaty f(z*) € T(x*)*

29



Lagrange Theorem

» Proof. Suppose thate 7(z*) . Then, by Theadzr,
there exists a differentiable curyg:) - t € (a,b)} such that
forall t € (a,b) ,h(z(t)) =0 , and therasts ¢ c (a,b)

satisfying
x(t) =z x(t) =y

» Now consider the composite functiem = f(z(t)) . Note
that+ Is a local minimizer of this function. Bye first-
order necessary condition for unconstrained local
minimizers (see Theorem 6.1)

do, ..
) =0
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Lagrange Theorem

» Proof. Applying the chain rule yields

%) = Df(@e(r) = Df(a)y = v fla) Ty =

Soall yeT1(z) satisfyf(z)’y=0
that Is, v f(x*) € T(x*)*
This completes the proof.

31



Lagrange’s Theorem

» Lagrange’s theorem states thatdf IS an extzer, then
the gradient of the objective functigh  can kpressed
as a linear combination of the gradients of thestamts.
We refer to the vectoA® as thagrange multiplier
vector, and its component asgrange multipliers

» A compact way to write the necessary condition is
v f(xz*) € N(z¥). If this condition fails, thenc* cannot be

an extremizer.
» Figure 20.13

32




Lagrange’s Theorem

» Consider the following problem:

minimize f(x)

subject to h(z) = O

where f(z) =2 and
(12 if x <0

h(z) =<0 Hfo<z<l1
\(28—1)2 ifx >1
The feasible set is evidently [0, 1]. Clearly; =0 Is a
local minimizer. However, f/'(z*) = 1 antz*) =0 .
Therefore, z* does not satisfy the necessarglitton in
Lagrange’s theorem. Note, however, that [sano

regular point, which is why Lagrange’s theorem doeis
apply here.
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Lagrange’s Theorem

» It is convenient to introduce theagrangian function

[ R"x R™ — R given by
Hz,A) 2 f(z) + A h(x)
The Lagrange condition for a local minimizer  can be
represented using the Lagrangian function as
Di(x*, \*) = 0!

for some)\* , where the derivative operatibrs with
respect to the entire argumeaf’, \'1” theowords,
the necessary condition in Lagrange’s theorem is
equivalent to the first-order necessary conditmm f
unconstrained optimization applied to the Lagrangia
function.
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Lagrange’s Theorem

» Denote the derivative of  with respectatoas D,! and
the derivative of/ with respectt® Ag . Then,
Di(z,\) = [D,l(z, \), Dyl(z, A)]

Note thatD,i(z, \) = Df(x) + X' Dh(x) andD,l(z,X) = h(x)"
Therefore, Lagrange’s theorem for a local minimizer
can be stated as

D l(z*, \*) = 0f

Dyl(z*, \*) = 0!
for someX* , which is equivalent i (z*, \*) = 07
In other words, the Lagrange condition can be esq@e
as Di(x*, \*) =07
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Lagrange’s Theorem

» The Lagrange condition is used to find possible

extremizers. This entails solving the equations

D l(x* A*) = 07

Dyl(z*, \*) = 0!
The above represents+ m equations+#mn
unknowns. Keep in mind that the Lagrange condiison
necessary but not sufficient; that is, a paintsatisfying
the equations above need not be an extremizer.
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Example

» Given a fixed area of cardboard, we wish to comstau
closed cardboard box with maximum volume. We can
formulate and solve this problem using the Lagrange
condition.

» Denote the dimension of the box with maximum volume
by z1,22,23 and let the given fixed arezafdboard be
A. The problem can then be formulated as

maximize T1Tox3

A

subject to x1xy + Tox3 + L3211 =

37



Example

» We denotef(x) = —zizoxs altk) = z120 + 203 + 2301 — A/2
We have Vf(CE) = —[51325133,561333,331332]T and
Vh(z) = [z + 23,71 + 23, 21 + 227 . Note that all feasible
points are regular in this case. By the Lagramgelition,
the dimension of the box with maximum volume s&ssf
Toxs — Axe + 3) =0
r1x3 — Az + x3) =0

T1To — /\<£131 + 5172) = (

A
L1T9 + o3 + 3l = 5

where ) ¢ R
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Example

» We now solve these equations. First, we showthat, z;
and A are all nonzero. Suppose that 0 By the
constraints, we have,z; = A/? . HoweVss,2econd and
third equations in the Lagrange condition yiald = \z; = 0
which together with the first equation implies that; = 0
This contradicts the constraints. A similar argutnen
applies toxs, 3

» Next, suppose that =0 . Then, the sum ofhhee
Lagrange equations givesz; + x1x3 + z1z2 = 0, Which
contradicts the constraints.
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Example

» We now solve fors, 25,23 In the Lagrangeagopns.
First, multiply the first equation by,  and thecond by,
and subtract one from the other. We arrives;atz, — z,) =0
Because neither; nar can be zero (bylawe
conclude thaty; =z, . We similarly deducatth, = x5

From the constraint equation, we obtain= 2y = 23 = \/A/6
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Example

» Notice that we have ignored the constraints that,, zs
are positive so that we can solve the problem using
Lagrange’s theorem. However, there is only onetsoiu
to the Lagrange equations, and the solution igigesi
Therefore, if a solution exists for the problemiwit
positivity constraints on the variables =, z3 , then this
solution must necessarily be equal to the solwioove
obtained by ignoring the positivity constraints.

4]



Example

» Consider the problem of extremizing the objective
function f(z)=2?+23 on the ellipse
{[Il, CCQ]T : h(il’,‘) = SC% -+ 233% — 1= O}
We have Vf(w> _ [2331’ 2$2]T
Vh(z) = [221, 42]"
» Thus,
D, l(x,\) = D,[f(x) + Ah(x)] = 221 + 2Ax1, 229 + 429
and D)l(x,\) = h(zx) = 2% + 223 — 1
Setting p,i(x, \) =07 andi(x,\) =0 , we obtain three
equations in three unknowns
2561 + 2/\5131 =(
209 + 4 x9 = (

2 22:]
“ 33]—|— Lo



201 + 2 11 = (
2582 + 4)\5132 =0

Example 2+ 20— 1

» All feasible points in this problem are regulamifrthe
first of the equations above, we get either 0 or \ = —1
For the case wherg =0 , the second and dajuctions
imply that\ = -1/2 and, = +1/v2 . For the case where
A= —1, the second and third equations imply that= +1

and z, =0 . Thus, the points that satisfyltagrange
condition for extrema are

0 [1/?/? ] ) _ [-13&] 23 = H 2@ — [—01]
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Example

» Because FlzW) = f(z®)

1
2
fa®) = f(¥) =1
we conclude that if there are minimizers, then they

located atz(V) ana® | and if there argimaers, then
they are located at®  aad! . It turastbat, indeed
1 and z® are minimizers ang? and are
maximizers.

» This problem can be
solved graphically (Figure 20.1.

x(4)=
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Example

» Consider the following problem:

' Qx

! Px
whereQ =Q" >0 ang =P’ >0 .Note that if a point

x = [z1,...,2,)" iS a solution to the problem, then so is any
nonzero scalar multiple of it,

te = [twy, ..., tw,]t, t#0

maximize

Indeed,

(tz) Q(tx) B t?x' Qx B ' Qx

(tx)'P(tx) t22’Px «!Px
Therefore, to avoid the multiplicity of solutionge
further impose the constraint

I Px =1
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Example

» The optimization problem becomes
maximize ¢! Qx
subject to ! Px = 1

» Letus write f(z) =z'Qz  h(z)=1-2'Px

» Any feasible point for this problem is regular. Viaw
apply Lagrange’s method. We first form the Lagrangi

function
l(z,\) =2 Qx + \1 - x! Px)

Applying the Lagrange condition yields
Dl(x, \) =22TQ — 2 ' P = 07
Dy(z,\)=1—z!Px =0
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D,l(z,\) =22"Q — 2\z’ P = 0"
Example Dy(z,\) =1 —z" Pz =

» The first of the equations above can be represexged
Qr—\Px=0 Or AP-Q)x=0
This representation is possible because p? and Q = Q'
By assumptionP >0 , henge! existenRiltiplying
(AP —Q)x =0 by p~! , we obtain
M, -P'Qz=0
or, equivalently,
P lQx = \x
Therefore, the solution, if exists, is an eigengeof P'Q
and the Lagrange multiplier is the corresponding
eigenvalue.
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Example

» As usual, letz* and*  be the optimal solutiBecause
' TPx*=1and P 'Qz* = \x* , we have
o= Qux?
Hence,\* Is the maximum of the objective fumttiand
therefore is, in fact, the maximal eigenvaluemf'Q
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Second-Order Conditions

» We assume thaf : R* — R and R — R™ are twice

continuously differentiablef.h € ¢> . Let

(2, A) = f(z) + X h(z) = f(x)+ Mh(z) + - + Apho(z)
be the Lagrangian function. Ldt(x, \) beklwssian
matrix of /(x, X\) with respecttp

L(x,\)=F(x)+ \MHq(x)+ -+ N\, H ()

where F(x) Is the Hessian matrix 0f zatnd H(x)
IS the Hessian matrix of, a&t k=1,..,m , given by

- 9%h 0%h T
87%(',1:) S 8xn6§1<$>
H.(x) = : :
Ha) O%h, O%h,.
_8:618%,,,(1:) 82—%(33) |
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Second-Order Conditions

» We introduce the notatiofhAH ()]
P\H(%)] = >\1H1<$> S iR o )\mHm(ZE>

» Using the notation above, we can write
L(x,\) = F(x)+ |AH(x)
» Theorem 20.4Second-Order Necessary Conditiond_et
z* be a local minimizer of : R” - R subject to
h(z)=0,h: R" — R".m <n,andf h cC?> . Suppose that is
regular. Then, there exisis ¢ r™ such that:
1. Df(z*) + XTDh(x*) = 0T
2. Forally e T(z*) . We hay@'L(z*, \*)y > 0

50



Second-Order Conditions

» Observe that.(z,A) plays a similar role asHbssian
matrix F(z) of the objective function didtime
unconstrained minimization case. However, we now
require thatL(z*, Ay >0  only anz*) athrer than om”

» These conditions above are necessary, but notisunf]
for a point to be a local minimizer. We now present
without a proof, sufficient conditions for a pototbe a
strict local minimizer.
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Second-Order Conditions

» Theorem 20.55econd-Order Sufficient Conditions

Suppose that.h cc*> and there exists a ppiatz and
A* € R™ such that:

1. Df(x*) + X*TDh(x*) = 07
2. Forally e T(xz*) .We havyg'L(z*, \*)y > 0
Thenz* Is a strict local minimizer 6f subjezh(z) =0

» Theorem 20.5 states that if an  satisfies dqgrange
condition, andr(z*, A*) IS positive definite 0z , then
IS a strict local minimizer. A similar result to @brem
20.5 holds for a strict local maximizer, the oniifetence
being thatL(z*, A} be negative definite p@a:*
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Second-Order Conditions

» Consider the following problem:

. x2'Qx 40 20
maximize Q = [O 1] P = [0 1]

T Px

» As pointed out earlier, we can represent this @mlh
the equivalent form

maximize ! Qx
_ subjec_t to x! Px =1
» The Lagrangian function for the transformed probism

given by i(z, \) = 7Qx + A(1 — 27 Px)
The Lagrange condition yields

M-P'Qx=0 P'Q-= [g (1)]
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Second-Order Conditions

» There are only two values pof that satisfy- P'Q)z =0
namely, the eigenvalues of 'Q : \, =2, ), = 1. We recall
from our previous discussion of this problem timat t
Lagrange multiplier corresponding to the solutisthe
maximum eigenvalue ab-'q¢ , namely=x, =2 . The
corresponding eigenvector is the maximizer — thetswliu
to the problem.

» The eigenvector corresponding to the eigenvalue
satisfying the constrainf Pz =1  4%* where

L]

54



Second-Order Conditions

» At this point, all we have established is thatphes+z*, 1)
satisfy the Lagrange condition. We now show that th
points +z* are, Iin fact, strict local maximizér#ge do this
for the pointz* . A similar procedure appliesto .

» We first compute the Hessian matrix of the Lagrangi
function. We have 00
L(z*, ) =2Q — 2\P = [o _2]
The tangent spacgz*) {®:1—2’Px=0} IS
T(x*)={y e R*: z*Py =0}
= {y : [V2,0]y = 0}

={y:y=[0,0]",a € R}
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Second-Order Conditions
» Note that for eachy e 7(z*),y £0

y L(z*, \)y = [0, 4 [8 _02] [2] _ 22 <)

Hence,L(z*,») <0 onz*) ,andthus1/y2.07 isa
strict local maximizer. The same is for the poiat

» Note that 2T Q"

T Pp*

which, as expected, is the value of the maximadmrglue
of '@ . Finally, we point out that any scataultiple ¢z
of a*, t+£0 , iTs a solution to the originabptem of
maximizing ‘”TQ””

2

x! Px
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Minimizing Quadratics Subject to Linear Constraints
» Consider the problem

minimize %wTQaj

subject to Ax = b
whereqQ > 0, A € R™*",m < n,rank(A) =m . ThiS problem is a
special case of what is calledjaadratic programming

problem (the general form of a quadratic programming
problem includes the constraint-0 ).

» Note that the constraint set contains an infinuenher of
points.
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Minimizing Quadratics Subject to Linear Constraints

» To solve the problem, we first form the Lagrangian
function

(z,A) =32' Qx + A'(b— Ax)
The Lagrange condition yields
D (x* A") =2 TQ — XTA =0
Rewriting, we get
r* — Q_lAT)\*
Premultiplying both sides of the above hy gives
Az = AQ AN\
Using the fact thataz* =b , and noting thgt'A” is
Invertible because -0 andk(A) =m, we can solve fox

to obtainx* = (AQ 'A")-» . Therefores wbtain
¥ — Q_lAT<AQ_1AT>_1b
58



Minimizing Quadratics Subject to Linear Constraints

» The pointz* Is the only candidate for a mininmize
establish that* Is indeed a minimizer, we vettigt it
satisfies the second-order sufficient conditions.

» For this, we first find the Hessian matrix of the
Lagrangian function at., ) . We have
Lx*\")=Q
which is positive definite. Thus, the poipt aistrict
local minimizer.
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Minimizing Quadratics Subject to Linear Constraints

» The special case whete- 1, reduces torthtggm
considered in Section 12.3. Specifically, the peabin
Section 12.3 is to minimize the noim subfechz = b
The objective function here igz) = |z|  high is not
differentiable at: =0 . This precludes the oke
Lagrange’s theorem because the theorem requires
differentiability of the objective function.

» We can overcome this difficulty by considering an
equivalent optimization problem

minimize 5|z

subject to Ax = b
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Minimizing Quadratics Subject to Linear Constraints

» The objective functionz|2/2  has the same mirer as

the previous objective functiogr| . Indeedg#ifis such

that for allz ¢ r  satisfyingz =b |5*|| < |z , then

|z*||2/2 < ||lz||?/2 Subject toAz =b IS sSimply the problem
considered above with =1, , we easily dedbee
solution to bez = A7(4A")-"'» , Whichregs with the
solution in Section 12.3.
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Example

» Consider the discrete-time linear system model
T =ax, 1+bur, k>1

with initial conditionz, given. We can think ¢f;} as a
discrete-time signal that is controlled by an axa¢mput
signal{v;} . In the control literature, Idled thestate at
time k¥ . For a given, , our goalis to chodsedontrol
signal {u;} so that the state remains “smalBroa/time
Interval[1, N] , but at the same time the cordrghal is
“not too large.”
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Example

» To express the desire to keep the statg |l suma
choose the control seqguence to minimize

1
B Zf\il 33@2

On the other hand, maintaining a control signal ihaot
too large, we minimize

» The two objectives above are conflicting in thessetinat
they cannot, in general, be achieved simultanecusly

minimizing the first may result in a large contedlort,
while minimizing the second may result in largdesa

63



Example

» One way to approach the problem is to minimize a
weighted sum of the two functions above. Speciijcale

can formulate the problem as

1

minimize 5 Zf\il(qﬁg + ru?)

subject to xp = axp_1 + bug, k=1,...,N,zy given

where the parametegs and reflect the r@ativ
Importance of keeping the state small versus keghia
control effort not too large. This problem is astance of
thelinear quadratic regulator (LQR) problem. Combining
the two conflicting objectives of keeping the stsiteall
while keeping the control effort small is an instarmf the
weightedsum approach.

64



Example

» To solve the problem, we can rewrite it as a quadra
programming problem. Define

_|ql, O
Q= [ o TIJ
! 0 —b 0 ]
A - —a .1 | —b
|0 —a 1l 0 —b_
Pk
0 _
b= | Z=[T1, .y TN, UL, ey UN]
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Example

» With these definitions, the problem reduces to the
previously considered quadratic programming problem
minimize %zTQz
subject to Az =b
whereQ I1S2N x2N A Bx2N ndacrY . The
solution is 2 = Q@ 'AT(AQ 'AT) b
» The firsty components af  represent thenogkistate
signal in the interval, N , whereas the second
components represent the optimal control signal.
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Example

» In practice, computation of the matrix inverseshia
formula for 2+ above may be too costly. Thereaher
ways to tackle the problem by exploiting its spkcia
structure. This is the study optimal control.
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Example

» Credit-Card Holder Dilemma. Suppose that we culyent
have a credit-card debt of $10,000. Credit-cardsiale
subject to a monthly interest rate of 2%, and twant
balance is increased by the interest amount eventhm
Each month we have the option of reducing the aticou
balance by contributing a payment to the accounerO
the next 10 months, we plan to contribute a payraeaty
month in such a way as to minimize the overall de\pt|
while minimizing the hardship of making monthly
payments.
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Example

» We solve our problem using the LQR framework. et t
current time be 0y, the account balance at rideoé
month x , and,, our payment in mopth . Weehav

xr=102v._1 —ur, k=1,..,10
that is, the account balance in a given month umkp
the account balance in the previous month plus the
monthly interest on that balance minus our payrtieatt
month. Our optimization problem is then

minimize 3 S0 (qa? + ru?)
subject to xp = 1.02x 1 —up, k=1,...,10, 29 = 10, 000
which is an instance of the LOQR problem. The patame
andr reflect our priority in trading off betwedabt

reduction and hardship in making payments.
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Example

» The more anxious we are to reduce our debt, theldhe
value of 4 relative to . On the other hane, tiore
reluctant we are to make payments, the larger ahee\of
r relative togq .

» The solution to the problem is given by the formula
derived in previous example. This figure plots the
monthly account balances and payments over theli@ext
months usingg=1 and=1w0 . [
We can see here that our debt hasémill ‘
been reduced to less than $1000 ¢ ASMEEEE=——

after 10 months, but with a first g
payment close to $3000. "’ |

1 2 3 4 5 6 7 8 9 10
70 Month

Figure 19.15 Plots for Example 19.10 withg = 1 and r = 10



Example

» If we feel that a payment of $3000 is too highntiaee can
try to reduce this amount by increasing the value o
relative toq . However, going too far along thieses can
lead to trouble. Indeed, if we uge- 1, =300, although
the monthly payments do not exceed $400, the a¢ccoun
balance is never reduced by much below $1O OOKDustn
case, the interest on the accour{™ |

palance eats up a significant

nortion of our monthly payment$

n fact, our debt after 10 month:

will be higher than $10,000.

». 5000

0 1 2 3 4 5 6 7 8 9 10
Month

3000

nthly payment

Mo_‘
g

\_-_-_-_-_-____-__—_
0 1 2 3 4 5 6 7 8 ] 10
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Figure 19.16 Plots for Example 19.10 with ¢ = 1 and » = 300



